대답:
400 개의 파빌리온 티켓과 1,200 개의 잔디 티켓이 판매되었습니다.
설명:
파빌리온 석 판매를 전화하자.
파빌리온 티켓은 20 달러, 잔디 티켓은 15 달러, 총 영수증은 26000 달러입니다. 따라서:
지금 대체
대용품
콘서트 티켓은 학생 8 달러, 비 학생용 10 달러였습니다. 총 11,700 달러에 1210 장의 티켓이 판매되었습니다. 얼마나 많은 학생 티켓이 팔렸습니까?
학생 티켓 판매량을 x 라하자 판매 된 비 학생 티켓의 수는 1210-x가됩니다. 따라서 주어진 조건에 따라 8x + (1210-x) 10 = 11700 => 10x-8x = 12100-11700 => x = 400 / 2 = 200
콘서트 티켓은 성인 3 달러, 학생 2 달러로 판매되었습니다. 합계 영수증이 824 개이고 학생 항공권과 같은 성인 티켓의 두 배가 팔린 경우, 얼마나 많은 티켓이 팔렸습니까?
나는 발견했다 : 103 명의 학생 206 명의 성인 나는 확실하지 않다. 그러나 나는 그들이 표 판매를 팔아 824 달러를 받았다고 생각한다. 어른의 수와 학생의 수를합시다. 우리는 다음과 같이 얻는다 : 3a + 2s = 824 그리고 a = 2s 우리는 첫 번째로 대체한다 : 3 (2s) + 2s = 824 6s + 2s = 824 8s = 824s = 824 / 8 = 103 students 그래서 a = 2s = 2 * 103 = 206 명의 성인.
동창회 댄스 티켓은 단일 티켓 20 달러 또는 커플 35 달러입니다. 티켓 판매는 총 2280 달러 였고 128 명이 참석했습니다. 각 유형의 티켓은 얼마나 많이 팔렸습니까?
16 싱글, 56 커플 우리가 만들 수있는 두 가지 선형 방정식이 있습니다. 하나는 돈을 위해, 다른 하나는 사람들을위한 것입니다. 단일 티켓의 수와 몇 개의 티켓의 수를 c로합시다. 우리는 돈의 양은 $ = 20 s + 35 c = 2280이라는 것을 알고 있습니다. 우리는 또한 얼마나 많은 사람들이 올 수 있습니까? P = 1 s + 2 c = 128 우리는 둘 다 같고 둘 다 동일하다는 것을 압니다. 우리는 두 개의 미지수와 두 개의 방정식을 가지고 있으므로, 각각을 풀기 위해 대수학을 할 수 있습니다. 20 초 + 20 초 + 20 초 + 35 초 = 2280 초 - 40 초 = -2560 초 -5c = -280은 c = 56을 의미합니다. 두 번째 방정식 s + 2c = s + 2 * 56 = s + 112 = 128은 s = 16을 의미한다