G (x) = 4x-12의 도메인은 {1, 3, 5, 7}입니다. 범위는 무엇입니까?
"range"- {- 8,0,8,16} 범위를 얻으려면 도메인의 값에 대해 g (x)를 계산하십시오. • g (1) = (4xx1) -12 = 4-12 = 색상 (적색) (- 8) • g (3) = (4xx3) -12 = 5) = (4xx5) -12 = 20-12 = 색상 (적색) (8) • g (7) = (4xx7) -12 = 28-12 = 색상 (적색) (16) rArr "범위"- { 8,0,8,16}
[-3, -1]에서 f (x) = x ^ 4 - 8x ^ 2 - 12의 절대 극한값은 얼마입니까?
-3 (x = -3에서 발생)과 -28 (x = -2에서 발생) 닫힌 간격의 절대 극한은 간격의 끝점 또는 f '(x) = 0에서 발생합니다. 즉, 미분 값을 0으로 설정하고 우리에게 어떤 x 값이 있는지 확인해야하며 x = -3 및 x = -1 (끝점이므로)을 사용해야합니다. 따라서 미분을 취하는 것으로 시작해서 : f (x) = x ^ 4-8x ^ 2-12 f '(x) = 4x ^ 3-16x 0과 같게 설정하면 다음과 같이 풀립니다. 0 = 4x ^ 3-16x 0 = x ^ 3-4x 0 = x (x ^ 2-4) x = 0 그리고 x ^ 2-4 = 0 따라서 해는 0, 2이다. 극한값이 발생할 수있는 가능한 장소는 x = -3, -2 및 -1 만 남기 때문에 구간 [-3, -1]에 있지 않기 때문에 즉시 0과 2를 제거합니다. 마지막으로, 이들을 하나씩 평가하여 절대 min과 max이 무엇인지 확인합니다. f (-3) = - 3 f (-2) = - 28 f (-1) = - 19 따라서 -3은 절대 최대 값이며 -28은 구간 [-3, -1]에서 절대 최소값입니다.
Y = 3x ^ 2-7x + 12의 꼭지점은 무엇입니까? x- 절편은 무엇입니까?
X = (-b / (2a)) = 정점의 7/6 y 좌표 : y = y (7/6) = 3 (y = 3x ^ 2-7x + 12) 정점의 x 좌표 : 49/36) - 7 (7/6) = 12 = 147/36 - 49/6 + 12 = - 147/36 + 432/36 = 285/36 = 7.92 꼭지점 (7/6, 7.92) 2 x- 절편은 y = 3x ^ 2-7x + 12 = 0의 이차 방정식을 풀어 라. D = b ^ 2 - 4ac = 49-144 <0. x 절편은 없다. 포물선은 위쪽을 향하고 완전히 x 축 위에 있습니다. 그래프 {3x ^ 2 - 7x + 12 [-40, 40, -20, 20}}