대답:
한쪽 길이는
설명:
측면 길이, 고도 (높이) 및 면적을 각각 s, h 및 A로 지정하십시오.
삼각형의 고도는 1.5 cm / 분의 속도로 증가하는 반면 삼각형의 면적은 5 cm2 / 분의 속도로 증가합니다. 고도가 9cm이고 면적이 81 평방 센티미터 일 때 삼각형의 밑변은 어느 정도 변화합니까?
이것은 관련 비율 변경 유형의 문제입니다. 관심 변수는 a = 고도 A = 면적이고 삼각형의 면적은 A = 1 / 2ba이므로 b = base가 필요합니다. 주어진 변화율은 분당 단위이므로, (보이지 않는) 독립 변수는 t = 분 단위의 시간입니다. a = 9cm, A = 81cm 일 때 (db) / dt를 찾도록 요청받습니다. (db) / dt = 3/2 cm / min (dA) / dt = 5 cm " ""^ 2 A = 1 / 2ba, t에 대해 미분하면, d / dt (A) = d / dt (1 / 2ba)가됩니다. 오른쪽에 제품 규칙이 필요합니다. (db) / dt (우리가 찾고자하는)와 b를 제외한 모든 값이 주어진다. b. 면적 및 a와 A의 주어진 값에 대한 공식을 사용하면 b = 18cm임을 알 수 있습니다. 대체 : 5 = 1 / 2 (db) / dt (9) +1/2 (18) 3/2 (db) / dt = -17 / 9cm / min을 구하십시오. 기준은 17/9 cm / 분으로 감소하고 있습니다.
이등변 삼각형의 밑변의 길이는 삼각형의 두 등변 중 하나의 길이보다 4 인치 더 작습니다. 둘레가 32 인 경우 삼각형의 각 변의 길이는 얼마입니까?
측면은 8, 12 및 12입니다. 우리는 우리가 가지고있는 정보를 나타낼 수있는 방정식을 만들어서 시작할 수 있습니다. 총 둘레는 32 인치입니다. 각면을 괄호로 나타낼 수 있습니다. 기지 이외의 다른 2면이 동등하다는 것을 알고 있기 때문에, 우리는 그것을 우위로 사용할 수 있습니다. 우리의 방정식은 (x-4) + (x) + (x) = 32와 같이 보입니다. 왜냐하면 밑변이 다른 두 변인 x보다 4 작기 때문입니다. 이 방정식을 푸면 x = 12가됩니다. 이것을 각면에 연결하면 8, 12, 12가됩니다. 추가하면 32의 둘레로 나옵니다. 이는 우리 쪽이 옳다는 것을 의미합니다.
삼각형의 변의 길이는 확장 비율 6 : 7 : 9이고 삼각형의 변의 길이는 88cm이고 변의 길이는 얼마입니까?
삼각형의 변은 다음과 같습니다 : 24cm, 28cm 및 36cm 길이의 비율은 6 : 7 : 9입니다. 변을 6x, 7x 및 9x로 표시하십시오. 둘레 = 88cm 6x + 7x + 9x = 88 변들은 다음과 같이 발견 될 수있다 : 6x = 6xx4 = 24cm7x = 7xx4 = 28cm9x = 9xx4 = 36cm (22x = 88x =