-2y = y ^ 2 / (xsin (x-y))를 어떻게 구별합니까?

-2y = y ^ 2 / (xsin (x-y))를 어떻게 구별합니까?
Anonim

대답:

# dy / dx = - (2sin (x-y) + 2xcos (x-y)) / (1-2xcos (x-y)

설명:

우리는 재 배열 및 단순화하여 다음을 얻을 수 있습니다.

# -2xsin (x-y) = y #

# d / dx y = d / dx -2xsin (x-y) #

dx x = d / dx -2x sin (x-y) -2xd / dx sin (x-y)

# d / dx y = - 2sin (x-y) -2xd / dx sin (x-y)

# d / dx y = - 2sin (x-y) -2xcos (x-y) d / dx x-y

# d / dx y = - 2sin (x-y) -2xcos (x-y) (d / dx x -d / dx y

# d / dx y = - 2sin (x-y) -2xcos (x-y) (d / dx x -d / dx y

chqain 규칙을 사용하면 # d / dx = dy / dx * d / dy #

(x-y) -2xcos (x-y) (1-dy / dxd / dy y) # dy / dxd / dy

# dy / dx = -2sin (x-y) -2xcos (x-y) (1-dy / dx) #

dx / dx = -2sin (x-y) -2xcos (x-y) + 2xcos (x-y) dy /

# dy / dx-2xcos (x-y) dy / dx = -2sin (x-y) -2xcos (x-y) #

# dy / dx 1-2xcos (x-y) = - 2sin (x-y) -2xcos (x-y) #

# dy / dx = - (2sin (x-y) + 2xcos (x-y)) / (1-2xcos (x-y)