Lnx + ln5x ^ 2 = 10이면 x는 무엇입니까?

Lnx + ln5x ^ 2 = 10이면 x는 무엇입니까?
Anonim

먼저 로그 규칙을 사용해야합니다.

#log_a (x) + log_a (y) = log_a (x * y) #

여기, 그것은 당신에게 준다:

# "ln x + ln 5 x ^ 2 = 10 #

# <=> "ln (x * 5 x ^ 2) = 10 #

# <=> "ln (5 x ^ 3) = 10 #

이제, 당신은 양측을 축척하여 # ln #:

# <=> "e ^ (ln (5x ^ 3)) = e ^ 10 #

… 기억 #이자형## ln # 역함수입니다 …

# <=> "5x ^ 3 = e ^ 10 #

# <=> "x ^ 3 = (e ^ 10) / 5 #

# <=> "x = 루트 (3) ((e ^ 10) / 5) #