Lim (e ^ x + x) ^ (1 / x)는 x 0 +?

Lim (e ^ x + x) ^ (1 / x)는 x 0 +?
Anonim

대답:

(1 / x) = e ^ 2 # (x ^ 0 + x)

설명:

#lim_ (x 0 ^ +) (e ^ x + x) ^ (1 / x) #

  • (ln (e ^ x + x) / x) # e (x, y)

(x 0 -> 0 +) ln (e ^ x + x) / x = _ (DLH) ^ ((0/0)) #(x -> 0 +) ((ln (e ^ x + x)) ') / ((x)') #lim_ #=#

(e ^ x + 1) / (e ^ x + x) = 2 #

따라서, (x -> x + x) = lim_ (x -> 0 ^ +) e ^ (ln (e ^ x + x) / x) = #

세트

#ln (e ^ x + x) / x = u #

# x-> 0 ^ + #

# u-> 2 #

#=# #lim_ (u-> 2) e ^ u = e ^ 2 #