대답:
설명:
방해
# = sqrt ((sqrt (u) -2) ^ 2) + sqrt ((sqrt (u) -3) ^ 2) #
# = | sqrt (u) -2 | + | sqrt (u) -3 | #
존재의 유의
사례 1:
그러므로
사례 2:
이것이 동어 반복이므로,
사례 3:
그러므로
함께 찍은 우리는
왼쪽의 그래프를 보면, 이것은 우리가 기대하는 것과 일치합니다:
P (x_1, y_1)를 점이라고하고 l을 방정식 ax + by + c = 0 인 선이라고 가정합니다.P -> l로부터의 거리 d는 다음과 같이 나타낼 수 있습니다. d = (ax_1 + by_1 + c) / sqrt (a ^ 2 + b ^ 2)? 방정식 3x + 4y = 11을 사용하여 선 l에서 점 P (6,7)의 거리 d를 구하십시오.
D = 7 l -> a x + b y + c = 0이고 p_1 = (x_1, y_1)은 l이 아닌 점이다. y = - (a x + c) / b를 d ^ 2로 대입 한 후, b 0 0을 호출하고 d ^ 2 = (x-x_1) ^ 2 + (y - y_1) ^ 2를 호출하면 d ^ 2 = x - x_1) ^ 2 + ((c + ax) / b + y_1) ^ 2. 다음 단계는 x에 관한 d ^ 2 최소값을 찾음으로써 d / (dx) = 2 (x-x_1) - (2a ((c + ax) / b + y_1 )) / b = 0 이것은 x = (b ^ 2 x_1 - ab y_1-ac) / (a ^ 2 + b ^ 2)에 대한 것이다. 이제이 값을 d ^ 2로 대입하면 d ^ 2 = + a x 1 + b y 1) ^ 2 / (a ^ 2 + b ^ 2) 그래서 d = (c + a x_1 + b y_1) / sqrt -11 = 0이고 p_1 = (6,7)이면 d = (-11 + 3xx6 + 4xx7) / sqrt (3 ^ 2 + 4 ^ 2) = 7
- (sqrt (5+) sqrt (3)) / (sqrt (3+) sqrt (3+) sqrt (5)) - (sqrt (5-) sqrt (3)) / (3-) sqrt (5))?
2/7 우리는 A = (sqrt5 + sqrt3) / (sqrt3 + sqrt3 + sqrt5) - (sqrt3 + sqrt3-sqrt5) = (sqrt5 + sqrt3) / (2sqrt3 + sqrt5) - (sqrt5 (sqrt5 + sqrt3) / (sqrt5 + sqrt3) / (2sqrt3 + sqrt3) / (2sqrt3-sqrt3) / (2sqrt3-sqrt3) (2sqrt3 + sqrt5)) / (2sqrt3 + sqrt5) (2sqrt3 + sqrt5) = (2sqrt15-5 + 2 * 3- sqrt15) - (2sqrt15 + 5-2 * 3sqrt15) (2sqrt15) - (2sqrt15) -5 + 2 * 3 + 취소 (sqrt15)) / (12-5) = ( (sqrt3 + sqrt (3 + sqrt5)) 및 (sqrt3 + sqrt (3-sqrt5)) 인 경우, 해답은 변경 될 것이다.
당신은 어떻게 단순화합니까 (1 / sqrt (a-1) + sqrt (a + 1)) / (1 / sqrt (a + 1) -1 / sqrt (a-1)) div sqrt (a + 1) / ( (a-1) sqrt (a + 1) - (a + 1) sqrt (a-1)
(1 / sqrt (a-1) + sqrt (a + 1)) / (1 / sqrt (a + 1) -1 / sqrt (a-1)) / (a-1) sqrt (a + 1) - (a + 1) sqrt (a + 1) 1) + sqrt (a + 1)) / (sqrt (a-1) -sqrt (a + 1)) / (sqrt (a + 1) cdot sqrt (a- 1) cdot sqrt (a + 1) -sqrt (a + 1) cdot sqrt (a + 1) sqrt (a-1))) = color ( (a + 1) -sqrt (a + 1)) / (sqrt (a + 1) cdot sqrt (a + 1) (a + 1) -sqrt (a + 1))) = 컬러 (적색) (a + 1) - (sqrt (a + 1) cdot sqrt (a-1) (a + 1) = sqrt (a + 1) cdot sqrt (a-1) (sqrt (a-1) -sqrt (a + 1) (a + 1) -sqrt (a + 1))) xx ((a + 1) + sqrt (a + 1) (a + 1)) / 색 (적색) (((1 + 1))) (a-1)) / (sqrt (a-1))) xx ((sqrt (a + 1) cdot sqrt (a-1) (a + 1) cdot sqrt (a-1)) xx s