
대답:
수평 점근선은 다음과 같습니다.
설명:
수평 점근선을 결정하는 세 가지 기본 규칙이 있습니다. 이들 모두는 분자의 가장 큰 힘 (분수의 상단)과 분모 (분수의 바닥)를 기반으로합니다.
분자의 가장 높은 지수가 분모의 가장 높은 지수보다 큰 경우 수평 점근선이 없습니다. 위와 아래의 지수가 같은 경우 지수의 계수를 y =로 사용하십시오.
예를 들어,
마지막 규칙은 분모의 가장 높은 지수가 분자보다 큰 방정식을 다룹니다. 이것이 발생하면 수평 점근선은 다음과 같습니다.
수직 점근선을 찾으려면 분모 만 사용하십시오. 0 이상의 수량은 정의되지 않으므로 분모는 0이 될 수 없습니다. 분모가 0이면 해당 지점에 수직 점근선이 있습니다. 분모를 취하여 0으로 설정하고 x를 구하십시오.
x는 -2와 2가됩니다. 왜냐하면 두 가지를 모두 제곱하면 서로 다른 숫자 일지라도 4가 나오기 때문입니다.
기본 경험 법칙: 제곱근을 제곱 한 경우 제곱근의 음수는 제곱 일 때 양수와 같은 대답을 생성하므로 실제 제곱근의 양수 및 음수입니다.
그래프 y = (5 + 2 ^ x) / (1-2 ^ x)의 모든 수평 점근선은 무엇입니까?

무한대에서 한계를 찾아 보자. 분자와 분모를 2 ^ x, = lim_ {x ~ + infty} {5 / 2 ^ x + 1}로 나눔으로써 lim_ {x ~ + infty} {5 + 2 ^ x} / {1-2 ^ } / {1 / 2 ^ x-1} = {0 +1} / {0-1} = - 1이고 lim_ {x ~ -infty} {5 + 2 ^ x} / {1-2 ^ x} = {5 + 0} / {1-0} = 5 따라서, 수평 점근선은 y = -1과 y = 5입니다.
점근선은 무엇입니까? + 예제

점근선 (Asymptotes)은 특정 함수가 아주 가까이에 닿을 수는 있지만 교차하지는 않는 선입니다. 예를 들어, 함수 y = 1 / x는 y = 0에 점근 적입니다. x가 커지면 커지고 작을수록 y는 작아집니다. y는 0에 가까워지는 경향이 있지만 결코 그 값에 도달하지는 않습니다.
F (x) = (1-5x) / (1 + 2x)의 점근선은 무엇입니까?

"x = -1 / 2"에서의 수직 점근선 "y = -5 / 2에서 수평 점근선 f (x)의 분모는 f (x)가 정의되지 않기 때문에 0 일 수 없습니다. 분모를 0으로 놓고 풀면 x가 될 수없는 값을 얻습니다. 그리고 분자가이 값에 대해 0이 아닌 경우에는 verical asymptote입니다. "lim"(xto + -oo), f (x) to c "(상수)" "분자 / 분모의 항을 나눗셈"1 + 2x = 0rArrx = -1 / 2 " xto + -oo와 같이 "xf (x) = (1 / x- (5x) / x) / (1 / x + (2x) / x) = (1 / x-5) / (1 / x + 2) f (x) ~ (0-5) / (0 + 2) rArry = -5 / 2 "는 점근선"