대답:
설명:
함수의 1 차 미분을 계산하여 시작하십시오.
이것은 당신을 얻을 것이다
(16 - x ^ 2) + x * d / dx (sqrt (16 - x ^ 2)) # d / dx (y) = d / dx
차별화 할 수 있습니다.
# d / dx (sqrt (u)) = d / (du) sqrt (u) * d / dx (u) #
# d / dx (sqrt (u)) = 1 / 2 * 1 / sqrt (u) * d / dx (16-x ^ 2) #
* 1 / sqrt (16-x ^ 2) * (-color (빨강) (색상은 검정색입니다.) (취소 (색 (검정) (2))) x) #
# d / dx (sqrt (1-x ^ 2)) = -x / sqrt (16-x ^ 2) #
이것을 다시 계산에 넣으십시오.
(16-x ^ 2)) + x * (-x / sqrt (16-x ^ 2)) #
(16-x ^ 2 - x ^ 2) # y ^ '= 1 / sqrt (16-x ^ 2) *
# y ^ '= (2 (8-x ^ 2)) / sqrt (16-x ^ 2) #
찾다
(16-x ^ 2) - (8-x ^ 2) * d / dx (sqrt (16) -x ^ 2))) / (sqrt (16-x ^ 2)) ^ 2 #
(16-x ^ 2) - (8-x ^ 2) * (-x / sqrt (16-x ^ 2))) / (16-x ^ 2) #
(16-x ^ 2)) / (16-x ^ 2) * (2-x ^ 2) ^ 2) #
# (16-x ^ 2) * (-32x + 2x ^ 3 + 8x - x ^ 3) # y ^ ('') = 2 / (sqrt
마지막으로
# (16 * x ^ 2)) # (16 * x ^ 2) *)
- (sqrt (5+) sqrt (3)) / (sqrt (3+) sqrt (3+) sqrt (5)) - (sqrt (5-) sqrt (3)) / (3-) sqrt (5))?
2/7 우리는 A = (sqrt5 + sqrt3) / (sqrt3 + sqrt3 + sqrt5) - (sqrt3 + sqrt3-sqrt5) = (sqrt5 + sqrt3) / (2sqrt3 + sqrt5) - (sqrt5 (sqrt5 + sqrt3) / (sqrt5 + sqrt3) / (2sqrt3 + sqrt3) / (2sqrt3-sqrt3) / (2sqrt3-sqrt3) (2sqrt3 + sqrt5)) / (2sqrt3 + sqrt5) (2sqrt3 + sqrt5) = (2sqrt15-5 + 2 * 3- sqrt15) - (2sqrt15 + 5-2 * 3sqrt15) (2sqrt15) - (2sqrt15) -5 + 2 * 3 + 취소 (sqrt15)) / (12-5) = ( (sqrt3 + sqrt (3 + sqrt5)) 및 (sqrt3 + sqrt (3-sqrt5)) 인 경우, 해답은 변경 될 것이다.
당신은 어떻게 단순화합니까 (1 / sqrt (a-1) + sqrt (a + 1)) / (1 / sqrt (a + 1) -1 / sqrt (a-1)) div sqrt (a + 1) / ( (a-1) sqrt (a + 1) - (a + 1) sqrt (a-1)
(1 / sqrt (a-1) + sqrt (a + 1)) / (1 / sqrt (a + 1) -1 / sqrt (a-1)) / (a-1) sqrt (a + 1) - (a + 1) sqrt (a + 1) 1) + sqrt (a + 1)) / (sqrt (a-1) -sqrt (a + 1)) / (sqrt (a + 1) cdot sqrt (a- 1) cdot sqrt (a + 1) -sqrt (a + 1) cdot sqrt (a + 1) sqrt (a-1))) = color ( (a + 1) -sqrt (a + 1)) / (sqrt (a + 1) cdot sqrt (a + 1) (a + 1) -sqrt (a + 1))) = 컬러 (적색) (a + 1) - (sqrt (a + 1) cdot sqrt (a-1) (a + 1) = sqrt (a + 1) cdot sqrt (a-1) (sqrt (a-1) -sqrt (a + 1) (a + 1) -sqrt (a + 1))) xx ((a + 1) + sqrt (a + 1) (a + 1)) / 색 (적색) (((1 + 1))) (a-1)) / (sqrt (a-1))) xx ((sqrt (a + 1) cdot sqrt (a-1) (a + 1) cdot sqrt (a-1)) xx s
1 = e ^ y-xcos (xy)의 함축적 인 미분은 무엇입니까?
(dy) / dx = (cosxy-xysinxy) / (eyy + xy2) (sinxy)) 1 = ey-xcos (xy) rArr (d1) / dx = d / dx (dx) / dx) cosxy + x (dcosxy) / dx rArr0 = (dy / dx) (dx / dx) rArr0 = (dy / dx) ey- (cosxy + x (dxy) / dx (-sinxy)) rArr0 = (dy / dx) ey- (dx / dx)) / dx) (- sinxy))) rArr0 = (dy / dx) eyy (cosy + rArr0 = (dy / dx) - (cosxy-xysinxy-x ^ 2 (dy) / dx (sinxy)) rArr0 = (dy / dx) ey- cosxy + xysinxy + xy2 / xyinxy = (dy / dx) (xy + dy) / dx (sinxy) -cosxy + xysinxy rArr0 = (dy / dx) (dx) / dx = (cosxy-xysinxy) / (ey + xy2 (sinxy))