대답:
아래를 봐주세요
설명:
# LHS = 1-sin4x + cot ((3pi) / 4-2x) * cos4x #
(cos (3π) / 4)) * cos4x # (cos2x + 1) / (cos2x-
(cos2x + 1) / (cos2x-cot (pi-pi / 4))) * cos4x #
(cos2x + 1) / (cos2x - (- cot (pi / 4))) * cos4x #
# = 1-sin4x + (1-cot2x) / (1 + cot2x) * cos4x #
1-sin4x + (1- (cos2x) / (sin2x)) / (1+ (cos2x) / (sin2x)) * cos4x #
(sin2x-cos2x) / (sin2x + cos2x) * cos4x #
sin2x-cos4x * sin2x-sin4x * cos2x) / (2 (sin2x + cos2x)) # = 1 + (2 (sin2x * cos4x-cos4x * cos2x-
cos (4x-2x) -cos (4x-2x) -cos (4x-2x) -sin (4x-2x) + 2x) - 신 (4x-2x)) / (2 (sin2x + cos2x)
sin2x-cos2x + cos6x-sin6x-sin (2x)) / (2 (sin2x + cos2x) #) = 1 + (sin6x-sin2x-cos6x-
# = 1- 취소 ((2 (sin2x + cos2x)) / (2 (sin2x + cos2x)))
# = 1-1 = 0 = RHS #