
대답:
아래를 참조하십시오.
설명:
이것은 삼각형입니다. 보시다시피 모호한 사례입니다.
그래서 각도를 찾으려면
모호한 경우이기 때문에:
직선에 대한 각도는 다음에 추가됩니다.
다이어그램에서 알 수 있듯이 다음과 같이 볼 수 있습니다.
여기 당신을 도울 수있는 링크가 있습니다. 이것은 파악하는 데 시간이 걸릴 수 있지만 올바른 경로에있는 것처럼 보입니다.
www.softschools.com/math/calculus/the_ambiguous_case_of_the_law_of_sines/
인접한 길이가 알려진 각도의 반대 길이보다 길면 사인 규칙의 모호한 경우가 있다고 배웠습니다. 그렇다면 왜 d)와 f)는 서로 다른 대답을 갖고 있지 않습니까?

아래를 참조하십시오. 다이어그램에서. bb (b) = 6 bb (a_1) = 3 bb (theta) = 30 ^ @ 이제 삼각형에 대한 다음과 같은 정보를 얻는다 고 가정 해 봅시다 : a_1 = a_2 ie bb (CD) = bb sinB / b = sinC / c sin (30 ^ @) / (a_1 = 3) = sinB / 6 이제 우리가 직면하는 문제는 이것입니다. bb (a_1) = bb (a_2) 삼각형 bb (ACB)에서 각도 bb (B)를 계산할 것인가 아니면 삼각형 bb (ACD)에서 bbD의 각도를 계산할 것인가? 우리가 준 기준에 맞는 삼각형. 모호한 경우는 한 각도와 두면이 주어 졌을 때 가장 많이 발생하지만 두 각도 사이에는 각도가 없습니다. 인접한면이 반대면보다 길면 모호한 경우라고 들었습니다. 이것은 사실이 아닙니다 : 다이어그램을 다시보십시오. 삼각형 bb (ACB) 우리가 bbA에서 각을받는다면 bb (AB) bb (CB) = bb (a_1) 이것은 모호한 경우를 초래하지 않는다. 왜냐하면 어떤 생각으로 볼 때 bb (AD) 및 bb (CB)는 고정 된 길이이고 bbA에서의 각도는 고정되어 있으므로 가능한 경우는 하나뿐입니다. 삼각형은이 경우 고유하게 정의됩니다. 귀하의 질문 (d)
두 개의 보완적인 각도의 비율은 4 : 5이며, 각도의 측정치는 무엇입니까?

4 + 5 = 9 90 / 9 = 10 4xx10 : 5xx10 40 ^ @ : 50 ^ @
두 개의 각도는 선형 쌍을 이룹니다. 더 작은 각도의 측정은 더 큰 각도의 측정 값의 절반입니다. 더 큰 각도의 각도 측정은 무엇입니까?

120 ^ @ 직선 쌍의 각은 총도 측정 값이 180 ^ @ 인 직선을 형성합니다. 쌍의 작은 각이 더 큰 각의 측정 값의 절반 인 경우 다음과 같이 연결할 수 있습니다. 작은 각도 = x ^ @ 큰 각도 = 2x ^ @ 각의 합은 180 ^ @이므로 그 x + 2x = 180. 이것은 3x = 180이므로 x = 60으로 단순화됩니다. 따라서 더 큰 각도는 (2xx60) ^ @ 또는 120 ^ @입니다.