대답:
설명:
# "given"x = a "는 다항식의 근원이다."#
# (x-a) "는 다항식의 인자"#
# ""x = a "의 다중도 2이면"#
# (x-a) ^ 2 "는 다항식"#
# "여기"x = 0 "다중성 2"rArrx ^ 2 "는 인자"#
# "또한"x = 3 "다중성 2"rArr (x-3) ^ 2는 "
# "와"x = -1 "다중성 1"rArr (x + 1) "은 인자"#
# "다항식은 그것의 인자"#
#P (x) = x ^ 2 (x-3) ^ 2 (x + 1) #
#color (흰색) (P (x)) = x ^ 2 (x ^ 2-6x + 9) (x + 1) #
#color (흰색) (P (x)) = (x ^ 4-6x ^ 3 + 9x ^ 2) (x + 1) #
#color (흰색) (P (x)) = x ^ 5-5x ^ 4 + 3x ^ 3 + 9x ^ 2 #
차수 4의 다항식 P (x)는 x = 3에서 다중도 2의 루트를 가지며 x = 0 및 x = -3에서 다중도 1의 근을 갖습니다. 그것은 점 (5,112)을 통과합니다. P (x)에 대한 공식을 어떻게 구합니까?
차수 4의 다항식은 루트 형식을가집니다. y = k (x-r_2) (x-r_3) (x-r_4) 루트 값으로 대체 한 다음 점을 사용하여 값을 찾습니다. k의. (x-3) (x - (- 3)) 점 (5,112)를 사용하여 k의 값을 구한다. 112 = k (5-0) (5-3) (5-3) (5- (-3)) 112 = k (5) (2) (8) k = 112 / (5) (2) 다항식의 근원은 y = 7 / 10 (x-3) (x-3) (x - (- 3))이다.
차수 5의 다항식 P (x)는 선행 계수 1을 가지며 x = 1 및 x = 0에서 다중도 2의 루트를 갖고 x = -3에서 다중도 1의 근을 갖습니다. P에 대해 가능한 수식을 어떻게 찾을 수 있습니까? (엑스)?
각 근은 선형 인자에 해당하므로 다음과 같이 쓸 수있다. P (x) = x ^ 2 (x-1) ^ 2 (x 이 0들과 적어도이 multiplicities들을 가진 임의의 다항식은 a이다. 이 P (x)의 배수 (스칼라 또는 다항식) 각주 엄밀히 말하면, P (x) = 0이되는 x의 값을 P (x) = 0 또는 P (x)의 제로라고합니다. 그래서 문제는 실제로 P (x)의 0 또는 P (x) = 0의 뿌리에 대해 말해야합니다.
원 A는 (6, 5)에 중심점이 있고 6pi의 영역을 갖습니다. 원 B는 (12, 7)에 중심을두고 48pi의 영역을 갖습니다. 원이 겹 칩니 까?
(12-6) ^ 2 + (7-5) ^ 2 = 40 쿼드와 4 (6) - (40-6-48) ^ 2 = 956> 0이기 때문에 우리는 제곱 된면으로 실제 삼각형을 만들 수있다. 48, 6, 40이므로이 원들은 교차합니다. # 그 이유는 무엇입니까? 영역은 A = pi r ^ 2이므로 r ^ 2 = A / pi입니다. 따라서 첫 번째 원은 반경 r_1 = sqrt {6}이고 두 번째 r_2 = sqrt {48} = 4 sqrt {3}입니다. 중심은 sqrt {(12-6) ^ 2 + (7-5) ^ 2} = sqrt {40} = 2 sqrt {10}입니다. 따라서 sqrt {6} + 4 sqrt {3} ge 2 sqrt {10} 인 경우 원이 겹칩니다. 너무 못 생겨서 계산기에 도달 한 것을 용서할 수 없습니다. 그러나 실제로는 필요하지 않습니다. 우회로를 타고 합법적 인 삼각법을 사용하여 어떻게 진행되는지 살펴 보겠습니다. 우리는 quadrances라고 불리는 제곱 된 길이에만 관심이 있습니다. 우리가 세 개의 사분면 A, B, C가 3 개의 동일 선상 점 사이의 사분면인지 테스트하고자한다고 가정 해 봅시다. 즉, sqrt {A} = sqrt {B} + sqrt {C} 또는 sqrt {B} = sqrt {A} +