Xy ^ 2- (1-xy) ^ 2 = C의 접선의 기울기는 무엇입니까? 여기서 C는 (1, -1)에서 임의의 상수입니까?

Xy ^ 2- (1-xy) ^ 2 = C의 접선의 기울기는 무엇입니까? 여기서 C는 (1, -1)에서 임의의 상수입니까?
Anonim

대답:

# dy / dx = -1.5 #

설명:

우리는 먼저 # d / dx # 각 용어의

# d / dx xy ^ 2 -d / dx (1-xy) ^ 2 = d / dx C #

(1-xy) d / dx 1-xy = 0 # d / dx x

(d / dx 1 -d / dx xy) = 0 # 2 + d / dx y ^ 2 x-

(-d / dx x y + d / dx y x) = 0 # 2 + d / dx y ^ 2 x-

(-y + d / dx y x) = 0 # 2 + d / dx y ^ 2 x-2 (1-xy)

체인 규칙은 다음과 같이 알려줍니다.

# d / dx = d / dy * dy / dx #

(yy + dy / dxd / dy y x) = 0 # 2 + dy / dx d / dy

# y ^ 2 + dy / dx 2yx-2 (1-xy) (- y + dy / dx x) = 0 #

# dy / dx 2yx-2 (1-x) dy / dx x = -y ^ 2-2y (1-xy) #

# dy / dx (2yx-2x (1-x)) = - y ^ 2-2y (1-xy) #엑스

# dy / dx = - (y ^ 2 + 2y (1-xy)) / (2yx-2x (1-x)) #

에 대한 #(1,-1)#

(1-1) -1) / (2 (1) (- 1) -2 (1) (1-1)) dy / dx = - ((- 1) ^ 2 + 2 = -1.5 #