대답:
설명:
용도
ID 사용
우리는 그것을 알고있다.
대답:
설명:
우리는
그러나
그때
마지막으로,
삼각법 대체를 사용하여 int sqrt (-x ^ 2x6 + 16) / xdx를 어떻게 통합합니까?
아래 답변을 참조하십시오.
삼각법 대체를 사용하여 int 1 / sqrt (-e ^ (2x) -20e ^ x-101) dx를 어떻게 통합합니까?
(10 × (10 × 10) / (sqrt (ex (2x) + 20ex + 101) +1)) + 1-sqrt101) / (10 e + x + 10) / (sqrt (e ^ (2x) + 20e ^ x + 101) +1)) + 1 + sqrt101)) + C 해결책은 약간 길다 !!! 주어진 int 1 / sqrt (-e ^ (2x) -20e ^ x-101) * dx int 1 / ((sqrt (-1) * sqrt (e ^ (2x) + 20e ^ x + 101)) * dx : i = sqrt (-1) 허수를 잠시 동안 빼고, 정수로 int 1 / (sqrt (e ^ (2x) + 20e ^ x + 101)) * dx로 진행한다. 사각형과 일종의 그룹핑 : int 1 / (sqrt ((e ^ x) ^ 2 + 20e ^ x + 100-100 + 101)) * dx int 1 / (sqrt ((e ^ x) ^ 2 + 20e xx + 100) -100 + 101)) * dx int 1 / (sqrt ((e ^ x + 10) ^ 2-100 + 101))) 10) ^ 2 + 1)))) * dx 첫 번째 삼각법 대체 : # 반대편 = e ^ x + 10 및 인접한면 = 1을 갖는 예각 w는 빗변 = sqrt (
삼각법 대체를 사용하여 int 1 / sqrt (x ^ 2-4x + 13) dx를 어떻게 통합합니까?
1 / sqrt (x ^ 2-4x + 13) = ln | sqrt (1+ (x-2) ^ 2 / 9) + (x-2) / 3 | + C int 1 / sqrt 4x + 13) dx = int 1 / sqrt (x ^ 2-4x + 9 + 4) dx int 1 / (sqrt (x-2) ^ 2 + 3 ^ 2)) dx x-2 = 3tan theta " dx = 3 초 ^ 2 세타 정수 1 / sqrt (x ^ 2-4x + 13) dx = int (3 초 ^ 2 세타 데타) / sqrt (9 단 2 시타 +9) = int (3 초 ^ 2 세타 (1 / tan ^ 2 theta)) ""1 + tan ^ 2 theta = sec ^ 2 theta int 1 / sqrt (x ^ 2-4x + 13) dx = int (3sec ^ 2theta dtheta) ) / (취소 (3sec 세타)) int 1 / sqrt (x ^ 2-4x + 13) dx = int (취소 (3sec ^ 2 세타) (x ^ 2-4x + 13) dx = int sec theta dtta int 1 / sqrt (x ^ 2-4x + 13) dx = ln | sec 세타 + tan 세타 | + C tan 세타 = (x-2) / 1 /