대답:
설명:
일반적인 기능
함수의 경우
우리는
다음 파생 상품에서 첫 번째 파생 상품이 모두 사라지는 것을 쉽게 볼 수 있습니다.
#(0,0)# # (0, pm 1 / sqrt2) # # (pm 1 / sqrt2, 0) # # (pm 1 / sqrt2, pm 1 / sqrt2) #
이 정지 점들의 본질을 검사하기 위해서 우리는 거기에서 두 번째 파생물의 행동을 관찰 할 필요가있다.
지금
유사하게
과
그래서
네가 접근하면
그렇게
그렇게
에 대한
의미하는 것은
그래서, 함수는 당신이 멀리 떠나는 방식으로 감소합니다.
다시, 양쪽 모두를 위해
그래서,이 두 지점 모두 로컬 미니 마입니다.
4 점
둘 다 0이 아닌
이 수치는
F (x, y) = (x + y + 1) ^ 2 / (x ^ 2 + y ^ 2 + 1)의 극한값과 안장 점은 무엇입니까?
1 단계 - 부분 파생어 찾기 우리는 두 개 이상의 함수의 편미 함수를 계산합니다 (f (x, y) = 2) 다른 변수는 상수로 취급되는 반면, 하나의 변수는 다른 변수로 구분합니다. 첫 번째 파생물은 f_x = {(x ^ 2 + y ^ 2 + 1) (2 (x + y + 1)) - ((x + y + 1) ^ 2) (2x)} / (x + y + 1) - 2x (x + y + 1) ^ 2) (x ^ 2 + y ^ 2 + 1-x ^ 2-xy-x)} / (x ^ 2 + (x ^ 2 + y ^ 2 + 1) ^ 2 f_y = {2 (x + y + 1) (x + y + 1) ^ 2) (2 ^ 2 + y ^ 2 + 1) (x + y + 1) - 2y (x + y + 1) ^ 2} / (x ^ 2 + y ^ 2 + 1) ^ 2 (x ^ 2 + y ^ 2 + 1) ^ 2 {2 (x ^ 2 + y ^ 2 + 1-y ^ 2-xy- 두 번째 파생물은 다음과 같다 : f_ (xx) = {2 (x + y + 1) (-4 (-x ^ 3-x ^ 3y-3x ^ 2y + 3xy ^ 2 + 3x + 3xy ^ 3 + 3xy + y ^ 3 + y)) / (x ^ 2 + y ^ 2 + 3y ^ 2 + 3y ^ 2 + 3yy ^ 3) 1) ^ 3 두
F (x) = 2x ^ 2lnx의 극한값과 안장 점은 무엇입니까?
F (x) = 2x ^ 2lnx의 정의 영역은 (0, + oo)의 간격 x입니다. (df) / dx = 4xlnx + 2x ^ 2 / x = 2x (1 + 2lnx) (d ^ 2f) / dx ^ 2 = 2 (1 + 2lnx) + 2x * 2 임계점은 f '(x) = 0 2x (1 + 2lnx) = 0 및 x> 0 : 1 + 2lnx = 0 lnx = -1의 해이다. / 2 x = 1 / sqrt (e)이 지점에서 : 임계점은 국부 최소값이므로 f "(1 / sqrte) = 6-1 / 2 = 11 / 2> 0. 안장 점은 다음과 같은 해의 해이다 : f "(x) = 0 6 + lnx = 0 lnx = -6 x = 1 / e ^ 6 그리고 f"(x)는 단조 증가하므로 f )은 x <1 / e ^ 6에 대해 아래로 오목하고 x> 1 / e ^ 6 그래프 {2x ^ 2lnx [-0.2943, 0.9557, -0.4625, 0.1625]
F (x, y) = 2x ^ 3 + xy ^ 2 + 5x ^ 2 + y ^ 2의 극한값과 안장 점은 무엇입니까?
((0,0), "min"), ((-1, -2), "saddle"), ((-1,2), "saddle" ), ((-5 / 3,0), "max") :} z = f (x, y)의 극한을 식별하는 이론은 다음과 같다 : 중요한 방정식 (부분 f) / 각 임계점에서 f_ (xx), f_ (yy) 및 f_ (xy) (= f_ (yx))를 평가한다. . 따라서 이들 각 점에서 델타 = f_ (xx) f_ (yy) -f_ (xy) ^ 2를 평가한다. 극한의 성질을 결정한다; {(델타 <0, "안장 지점이 있습니다"), {(델타> 0, "최소 f_ (xx) <0), (및"f_ } 우리는 첫 번째 부분 도함수를 찾는다 : (x, y) = 2x ^ 3 + xy ^ 2 + 5x ^ 2 + y ^ 2 우리의 중요한 방정식은 다음과 같습니다 : 6x ^ 2 + y ^ 2 + 10x = 0 2xy + 2y = 2y = 0 두 번째 방정식으로부터 2y (x + 1) = 0 => x = -1, y = 0 첫 번째 방정식에 x = -1을 곱하면 6 + y ^ 2-10 = 0이됩니다. 첫 번째 방정식에 y = 2 = 4