대답:
가능한 가장 긴 둘레
설명:
가장 긴 둘레를 얻으려면 길이 16에 해당해야합니다.
사인의 법칙을 적용하면,
가능한 가장 긴 둘레
삼각형의 두 모서리는 (5 파이) / 12와 (파이) / 12의 각도를가집니다. 삼각형의 한면의 길이가 15 인 경우 삼각형의 가능한 가장 긴 둘레는 무엇입니까?
가능한 가장 긴 둘레 P = 128.9363 주어진 : / _A = pi / 12, / _B = ((5pi) / 12) / _C = pi - pi / 12 - (5pi) / 12 = pi / 각도는 길이 15a / sinA = b / sinB = c / sinC15 / sin (π / 12) = b / sin ((5π) / 12) = c / sin (π / 2) (15/8) / sin (π / 12) = 57.9555 둘레 길이 P = 15 + 55.9809 + 57.9555 = 128.9363
삼각형의 두 모서리는 (5 파이) / 12와 (파이) / 12의 각도를가집니다. 삼각형의 한면의 길이가 2 인 경우 삼각형의 가능한 가장 긴 둘레는 무엇입니까?
가능한 가장 긴 둘레 = 17.1915 삼각형 각도의 합 = pi 두 각도는 (5pi) / 12, π / 12 따라서 3 (rd) 각도는 pi - ((5pi) / 12 + pi / 12) = (pi ) / 2 우리는 a / sin a = b / sin b = c / sin c를 안다. 가장 긴 둘레를 얻으려면 길이 2가 각도 pi / 24 :와 반대가되어야한다. b / (sin (π / 12)) / sin (π / 12) = sin (π / 12) = b / sin = 7.4641c = (2 * sin (π / 2)) / sin (π / 12) = 7.7274 따라서, 주변 = a + b + c = 2 + 7.4641 + 7.7274 = 17.1915
삼각형의 두 모서리는 (5 파이) / 12와 (파이) / 12의 각도를가집니다. 삼각형의 한면의 길이가 6 인 경우 삼각형의 가능한 가장 긴 둘레는 무엇입니까?
= 13.35 분명히 이것은 pi- (5pi) / 12-pi / 12 = pi / 2와 같이 직각 삼각형입니다. 한면 = hypoten use = 6, 다른면 = 6sin (pi / 12) 및 6cos (pi / 12) 따라서 삼각형의 주변 = 6 + 6sin (pi / 12) + 6cos (pi / 12) = 6 + (6times0.988) + (6times0.966) = 6 + 1.55 + 5.8) = 13.35