부품 별 통합으로,
몇 가지 세부 사항을 살펴 보겠습니다.
방해
부품 별 통합으로,
방해
금후,
내장 된 intarctan (4x) dx를 어떻게 찾을 수 있습니까?
I = x * tan ^ -1 (4x) -1 / 4log | sqrt (1 + 16x ^ 2) | + C = x * tan ^ -1 (4x) -1 / 8log | (1 + 16x ^ 2) | 1 / 4sec ^ 2udu = 1 / 4sec ^ 2udu = 1 / 4sec ^ 2udu = 1 / 4sec ^ 2udu = 1 / 4sec ^ 2udu = 1 / 4sec ^ 2udu = 1 / 4sec ^ 2udu = (u * intsec ^ 2udu *) * 4 * uu * 2udu 부품에 의한 통합을 사용하면 1 / 4 [u * intsec ^ 2udu-int (d / (du) (u) * intsec ^ 2udu) tanudu] = 1 / 4 [u * tanu-log | secu |] + C = 1 / 4 [tan ^ -1 (4x) * (4x) -log | sqrt (1 + tan ^ 2u |) + C = x * tan ^ -1 (4x) -1 / 4log | sqrt (1 + 16x ^ 2) | + C 두 번째 방법 : (2) I = int1 * tan ^ -1 (4x) dx = tan ^ -1 * x-int (1 / (1 + 16x ^ 2) * 4) xdx = x * tan ^ -1 (4x) -1 / 8int
정수 intln (2x + 1) dx를 어떻게 찾을 수 있습니까?
부품에 의한 대체 및 통합에 의해, int ln (2x + 1) dx = 1 / 2 (2x + 1) [ln (2x + 1) -1] + C int ln (2x + 1) dx를 t = 2x + 1으로 대치합니다. 부품 별 통합으로 Rightarrow {dx} / {dx} = 2 Rightarrow {dx} / {dt} = 1 / 2 Rightarrow dx = {dt} / {2} = 1 / 2intnt dtt, u = dt = 1 / 2t (lnt-1) + C (t) = dt = dt를 외삽 법에 의해 외삽 법에 의해 Rightarrow du = dt / t 및 v = t = 1 / 2 (tlnt-int dt) = 1 / 2 = 1 / 2 (2x + 1) [ln (2x + 1) -1] + C
정수 int (x ^ 2 * sin (pix)) dx를 어떻게 찾을 수 있습니까?
부분 별 통합을 사용하면 다음과 같은 수식을 사용합니다. intx (2) dv = uv - intv du 어느 파생 상품에 대한 제품 규칙을 기반으로합니다 : uv = vdu + udv이 수식을 사용하려면 우리는 어떤 용어가 u가 될 것인지, 어떤 것이 dv가 될지 결정해야합니다. 어떤 용어가 ILATE 방법이되는지 알아내는 유용한 방법. 역 삼각 로그 대수 대수 삼각 지수 이것은 어떤 용어가 "u"에 사용되는지에 대한 우선 순위를 제공하므로 남아있는 것은 무엇이든지 우리의 dv가됩니다. 우리의 함수는 x ^ 2와 sinpix를 포함하고 있습니다. 따라서 ILATE 메서드는 x ^ 2가 sinpix 인 trig보다 목록에서 대수적이며 더 높기 때문에 x ^ 2가 우리의 u로 사용되어야한다고 말합니다. u = x ^ 2, dv = sinpix 공식에 필요한 다음 항목은 "du"와 "v"이며, "u"의 미분과 "dv"의 적분을 찾아서 얻습니다. d / dxx ^ 2 = 2x = du 적분에 대해서는 대입을 사용할 수 있습니다. 우리는 이제 다음을 얻었습니다 : du = 2x dx, v = (-1 / pi) cospix 원래의