대답:
설명:
두 점 사이의 거리를 계산하는 공식은 다음과 같습니다.
문제의 두 점을 대입하여 계산하면 거리가 다음과 같이 나타납니다.
좌표 평면에서 (-2, 8)과 (-10, 2) 사이의 거리는 얼마입니까?
거리는 10 단위입니다. d = sqrt ((x_1-x_2) ^ 2 + (y_1-y_2) ^ 2) = sqrt ((x_2-x_1) ^ 2 + (x_1, y_1) d = sqrt ((- 2 - (-10)) ^ 2 + (8-2) ^ 2) d = sqrt 100 = 10
좌표 평면에서 (2, -1)과 (-1, -5) 사이의 거리는 얼마입니까?
점 사이의 거리는 5입니다. 두 점 사이의 거리를 계산하는 공식은 다음과 같습니다. color (red) (d = sqrt (x_2 - x_1) ^ 2 + (y_2 - y_1) ^ 2)) 점을 수식 d = sqrt ((- 3) ^ 2 + (-4) ^ 2) d = sqrt (9 + 16) d = sqrt ((-1 - 2) ^ 2 + d = sqrt (25) d = 5
좌표 평면에서 (-2, 1)과 (4, -4) 사이의 거리는 얼마입니까?
아래의 솔루션 프로세스를 참조하십시오. 두 점 사이의 거리를 계산하는 공식은 다음과 같습니다. d = sqrt ((color (red) (x_2) - color (blue) (x_1)) ^ 2 + (color (red) (y_2) d = sqrt ((color (red) (4) - color (blue) (- 2)) ^ 2 + (color (blue) (y_1)) ^ 2) 문제의 점에서 값을 대입하면, 빨간색 + (- 4) - 색상 (파란색) (1)) ^ 2) d = sqrt ((색상 (적색) (4) + 색상 (파랑) (2)) ^ 2 + D = sqrt (6 ^ 2 + (-5) ^ 2) d = sqrt (36 + 25) d = sqrt (61) 또는 d = 7.810 가장 가까운 것으로 반올림 됨 천 번째.