대답:
최대 면적
설명:
최대 면적을 얻으려면
옆면의 비율은 15: 6입니다.
따라서 지역은
삼각형의 최대 면적
마찬가지로 최소 면적을 얻으려면
사이드가 비율에있다.
최소 면적
삼각형 A는 32의 면적을 가지며 길이가 8과 9 인 두 변을 가지고 있습니다. 삼각형 B는 삼각형 A와 유사하며 길이가 15 인 변을 가지고 있습니다. 삼각형 B의 가능한 최대 및 최소 영역은 무엇입니까?
최대 영역 112.5 및 최소 영역 88.8889 델타 A 및 B는 유사합니다. 델타 B의 최대 면적을 얻으려면 델타 B의 측면 15가 델타 A의 측면 8에 해당해야합니다. 측면의 비율은 15 : 8이므로 면적은 15 ^ 2 : 8 ^ 2 = 225 : 64 삼각형의 최대 면적 B = (32 * 225) / 64 = 112.5 최소 면적을 얻으려는 것과 마찬가지로 델타 A의 측면 9는 델타 B의 측면 15에 해당합니다. 측면의 비율은 15 : 9이고 영역 225 : 81입니다 델타 B의 최소 면적 = (32 * 225) / 81 = 88.8889
삼각형 A는 3의 면적을 가지며 길이가 5와 4 인 두 변을 갖습니다. 삼각형 B는 삼각형 A와 유사하며 길이가 14 인 변을 가지고 있습니다. 삼각형 B의 가능한 최대 및 최소 영역은 무엇입니까?
최대 영역 36.75 및 최소 영역 23.52 델타 A와 B는 유사합니다. 델타 B의 최대 면적을 얻으려면 델타 B의 측면 14가 델타 A의 측면 4와 일치해야합니다. 측면은 비율 14 : 4에 있으므로 면적은 14 ^ 2 : 4 ^ 2 = 196 : 9 삼각형의 최대 면적 B = (3 * 196) / 16 = 36.75 최소 면적을 얻는 것과 마찬가지로 델타 A의 측면 5는 델타 B의 측면 14에 해당합니다.면은 비율 14 : 5와 면적 196 : 25입니다 델타 B의 최소 면적 = (3 * 196) / 25 = 23.52
삼각형 A는 4의 면적을 가지며 길이가 5와 3 인 두 변이 있습니다. 삼각형 B는 삼각형 A와 유사하며 길이가 32 인 변을가집니다. 삼각형 B의 가능한 최대 및 최소 영역은 무엇입니까?
113.dot7 또는 163.84는 32가 3의 측면에 해당하면 10 2/3 (32/3)의 승수입니다. 영역이 5의 측면에 해당하는 경우 4xx (32/3) ^ 2 = 1024 / 9 = 113.dot7이되며 6.4 (32/5)의 배수입니다. 영역은 4xx6.4 ^ 2 = 4096 / 25 = 163.84