정확한 값을 찾는 법 COS (SIN ^ -1 4 / 5 + TAN ^ -1 5/12)?

정확한 값을 찾는 법 COS (SIN ^ -1 4 / 5 + TAN ^ -1 5/12)?
Anonim

대답:

#rarrcos (sin ^ (-1) (4/5) + tan ^ (- 1) (5/12)) = 16 / 65 #

설명:

방해 #sin ^ (- 1) (4/5) = x # 그때

# rarrsinx = 4 / 5 #

1 / (sqrt (1 / (4/5)) = 1 / (sqrt (csc ^ 2x-1)) = 1 / (sqrt) ^ 2-1)) = 4 / 3 #

# rarrx = tan ^ (- 1) (4/3) = sin ^ (- 1) = (4/5) #

지금,

#rarrcos (sin ^ (-1) (4/5) + tan ^ (- 1) (5/12)) #

# = cos (tan ^ (-1) (4/3) + tan ^ (- 1) (5/12)) #

(4/3 + 5 / 12) / (1- (4/3) * (5/12))))) # = cos (tan ^ (-1)

# = cos (tan ^ (- 1) ((63/36) / (16/36))) #

# = cos (tan ^ (- 1) (63/16)) #

방해 #tan ^ (- 1) (63/16) = A # 그때

# rarrtanA = 63 / 16 #

1 / sqrt (1 + tan ^ 2A) = 1 / sqrt (1+ (63/16) ^ 2) = 16 / 65 #

# rarrA = cos ^ (-1) (16/65) = tan ^ (- 1) (63/16) #

(1 / 2) = cos (tan (-1) (63/16)) = cos (cos ^ (- 1) (16/65)) = 16 / 65 #