대답:
참조하십시오. 증명 ~ 안에 설명.
설명:
먼저 우리는
우린 알아
증명 ((1 + cos2x + sin2x) / (1 + cos2x - sin2x)) ^ n = cos2nx + isin2nx?
(1 + cos2x + isin2x) = [2 (cosx) ^ 2 + 2i * sinx * cosx] / [2 (cosx) ^ 2-2i * sinx * cosx] = [ (cosx + isinx) = (cosx + isinx) / (cosx + isinx) = (cosx + isinx) ^ 2 / [(cosx- (sinx) ^ 2] = (cosx) ^ 2- (sinx) ^ 2 + 2i * sinx * cosx] / (cosx) ^ 2 + (sinx) ^ 2] = (cos2x + isin2x) / 1 = cos2x + isin2x 따라서, [(1 + cos2x + isin2x) / (1 + cos2x-isin2x)] n = (cos2x + isin2x) n = cos (2nx) + isin
증명할 수있다. (Sinx + Sin2x + Sin3x) / (cosx + cos2x + cos3x) = tan2x
(3x-x) / 2) + sin2x) / (2cos ((3x + x) / 2) + cos2x + cos2x) / (2cos + cos2x + cos3x) cos2xcancel ((1 + 2cosx))) / (cos2xcancel ((x2) / cos2x2) = cos2xcancel 1 + 2cosx))) = tan2x = RHS
누군가 이것을 확인할 수 있습니까? (cotx-1) / (cotx + 1) = (1-sin2x) / (cos2x)
(1-sin2x) / (cos2x) = (sin2x + cos2x-2sinxcosx) / (cos2x) [Ascolor (갈색) (sin2x = 2sinxcosxandsin ^ 2x + cos ^ 2x = 1) (cosx-sinx)] = (cosx-sinx) 2 = (cosx-sinx2x) [cos, (cosx-sinx)) / (cancelsinx (cosx / sinx)) = (cxx-sinx) cotx + 1) [확인 됨.]