
대답:
아래 참조 …
설명:
첫째, 대시가있는 모든 줄은 길이가 동일합니다.
두 번째로, 사각형의 면적은
섹터 영역을 만들기 위해 가장 간단한 방법은 라디안을 사용하는 것입니다.
라디안은 각도의 다른 측정 방법입니다.
반지름이 호 길이와 같을 때 1 라디안이 발생합니다.
라디안으로 변환하려면
이제 섹터의 영역은 다음과 같습니다.
각도가 라디안 인 경우.
여기서 반원의 반경은
두 분야가 있으므로
원 A는 (12, 9)에 중심점이 있고 25pi의 영역을 가지고 있습니다. 원 B는 (3, 1)에 중심점이 있고 64pi의 영역을 갖습니다. 원이 겹 칩니 까?

예 처음에 우리는 두 원의 중심 사이의 거리를 찾아야합니다. 이 거리는 서클이 가장 가까이있는 곳이기 때문에이 서클이 겹치면이 선을 따라 위치합니다. 이 거리를 찾으려면 d = sqrt ((x_1-x_2) ^ 2 + (y_1-y_2) ^ 2) d = sqrt ((12-3) ^ 2 + (9-1) ^ 2 ) = sqrt (81 + 64) = sqrt (145) ~~ 12.04 이제 각 원의 반경을 찾아야합니다. 우리는 원의 영역이 p ^ 2라는 것을 알기 때문에 이것을 이용하여 r을 풀 수 있습니다. 마지막으로 우리는이 두 반지름을 더한다. 마지막으로 우리는이 두 반지름을 합친다. 반경의 합은 13이며 원의 중심 사이의 거리보다 큽니다. 즉 원이 겹칠 것입니다.
대수 함수의 그래프로 경계가 지정된 영역을 스케치하고 영역의 영역을 찾습니다. f (x) = -x ^ 2 + 2x + 3 및 g (x) = x +

아래 답변을 참조하십시오.
대수 함수의 그래프로 경계가 정해진 영역을 스케치하고 영역 f (y) = 1 - y ^ 2 및 g (y) = y - 1의 영역을 찾으십시오.

아래 답변을 참조하십시오.