죄는 어떻게 계산합니까 (cos ^ -1 (5/13) + tan ^ -1 (3/4))?

죄는 어떻게 계산합니까 (cos ^ -1 (5/13) + tan ^ -1 (3/4))?
Anonim

대답:

#sin (cos ^ (-1) (5/13) + tan ^ (- 1) (3/4)) = 63 / 65 #

설명:

방해 #cos ^ (- 1) (5/13) = x # 그때

# rarrcosx = 5 / 13 #

# rarrsinx = sqrt (1-cos ^ 2x) = sqrt (1- (5/13) ^ 2) = 12 / 13 #

# rarrx = sin ^ (-1) (12/13) = cos ^ (- 1) (5/13) #

또한, #tan ^ (- 1) (3/4) = y # 그때

# rarrtany = 3 / 4 #

# rarrsiny = 1 / cscy = 1 / sqrt (1 + cot ^ 2y) = 1 / sqrt (1+ (4/3) ^ 2) = 3 / 5 #

# rarry = tan ^ (- 1) (3/4) = sin ^ (- 1) (3/5) #

#rarrcos ^ (- 1) (5/13) + tan ^ (- 1) (3/4) #

# = sin ^ (- 1) (12/13) + sin ^ (- 1) (3/5) #

# = sin ^ (-1) (12 / 13 * sqrt (1- (3/5) ^ 2) + 3 / 5 * sqrt (1- (12/13) ^ 2)) #

# = sin ^ (-1) (12 / 13 * 4 / 5 + 3 / 5 * 5 / 13) = 63 / 65 #

지금, #sin (cos ^ (-1) (5/13) + tan ^ (- 1) (3/4)) #

# = sin (sin ^ (- 1) (63/65)) = 63 / 65 #