대답:
설명:
죄를 센으로 생각할 때
방해
그래서 주어진 적분은
대체
더 단순화 된 버전은
일정하게하다
Cos²π / 10 + cos² 4π / 10 + cos² 6π / 10 + cos²9π / 10 = 2를 보여라. Cos2π / 10 = cos² (π-6π / 10) & cos²9π / 10 = cos² (π-π / 10)으로하면 혼란 스러워요. cos (180 ° -theta) = - costheta로 음수가됩니다. 제 2 사분면. 어떻게 문제를 증명할 수 있습니까?
아래를 봐주세요. (9π / 10) = cos ^ 2 (pi / 10) + cos ^ 2 ((4π / 10) + cos ^ 2 10) + cos ^ 2 ((4π) / 10) + cos ^ 2 (pi- (4π) / 10) + cos ^ 2 (pi- (pi) / 10) = cos ^ 2 (2π / 10) + cos ^ 2 ((4π) / 10) = 2 * 10)] = 2 * [cos ^ 2 (π / 2- (4π) / 10) + cos ^ 2 ((4π) / 10) 2 ((4pi) / 10)] = 2 * 1 = 2 = RHS
Int sec ^ -1x를 파트 메서드로 통합하여 어떻게 통합합니까?
= x "arc"secx-ln (x + sqrt (x ^ 2-1)) + C 우리는 (sec ^ -1x) '= ( "arc"secx)'= 1 / (xsqrt (x ^ 2-1)) intsecxdx = ln (sqrt (x ^ 2-1) + x) 부분 별 통합은 intu'v = uv-intuv '여기에서 우리는 u'= 1, =>, u = xv = "arc 따라서, "arc"secxdx = x "arc"secx-int (dx) / (sqrt (x ^ 2-1)) "secx, =>, v '= 1 / (xsqrt 대입을 통해 두 번째 적분을 수행합니다. x = secu, =>, dx = secutanudu sqrt (x ^ 2-1) = sqrt (sec ^ 2u-1) = tanu intdx / sqrt (x ^ 2-1) = int (secutanudu ) = (secu + tanu) / (secu + tanu) = (secu + tanu) = int secu + tanu = >, dv = (sec ^ 2u + secutanu) du 그래서, intdx / sqrt (x ^
E ^ x * cos (x)를 어떻게 통합합니까?
Int e ^ xcos (x) dx = e ^ x / 2 (cosx + sinx) + C 부품을 두 번 사용하여 통합해야합니다. u (x) = cos (x)는 u '(x) = -sin (x) v'를 의미한다. (x) = e ^ x는 다음과 같이 IBP를 사용합니다. 빨간색 용어. u (x) = sin x (x)는 다음과 같이 나타낼 수있다. u '(x) = cos (x) + [e ^ xsin (x) - inte ^ xcos (x) dx] 따라서, e x xcos (x) dx = e x / 2 (cosx + sinx) + C