대답:
설명:
삼각형 면적 계산 공식은 다음과 같습니다.
이것이 45-45-90 삼각형이라는 사실 덕분에 삼각형의 밑과 삼각형의 높이가 같습니다. 따라서 우리는 양측의 값을 찾아 수식에 연결하기 만하면됩니다.
우리는 빗변의 길이를 가지고 있으므로, 피타고라스 정리를 사용하여 양면의 길이를 계산할 수 있습니다.
(우리는 그 지역이
남은 두면이 동등하다는 것을 알기 때문에 여기서 간단하게 할 수 있습니다. 그래서 우리는
삼각형의 양쪽 비 빗변면은
삼각형의 변 A, B, C가 있습니다. 변 A와 B 사이의 각도는 π / 6이고 변 B와 C 사이의 각도는 π / 12입니다. B면의 길이가 3 인 경우 삼각형의 면적은 얼마입니까?
면적 = 0.8235 평방 단위. 우선, 작은 글자 a, b, c가있는 쪽을 나타냅니다. / _ C에 의해 a와 b 사이의 각도를 / _ A로, b와 c 사이의 각도를 / _ A로, 그리고 측면 c와 a 사이의 각도를 / B로 명명하십시오. 주 : - 기호 / _는 "각도" . / _C 및 / _A와 함께 제공됩니다. 삼각형의 내부 천사의 합이 pi 라디안이라는 사실을 이용하여 / _B를 계산할 수 있습니다. (3) / 12 = 파이 - 파이 (pi / pi) (12)를 의미 함을 의미한다. / 4 = (3pi) / 4 implies / _B = (3pi) / 4 측면 b = 3이 주어진다. (3 / 4) / 3 = sin ((π) / 6) / c는 (1 / sqrt2)을 의미한다. c = 3 / sqrt2 따라서 c = 3 / sqrt2 면적은 또한 Area = 1 / sqrt2로 주어지며, c = 1 / (2c) 영역 = 1 / 2 * 3 * 3 / sqrt2Sin ((π) / 12) = 9 / (2sqrt2) * 0.2588 = 0.8235 제곱 단위는 영역 = 0.8235 제곱 단위
삼각형의 변 A와 B의 길이가 각각 1과 6이고 그 사이의 각도가 (pi) / 2이면 삼각형의 면적은 얼마입니까?
3 평방 단위. 삼각형의 면적은 두 변의 곱의 절반과 사변의 사인을 곱한 값입니다. 주어진 두 변 사이의 각도는 직각이므로 pi / 2 라디안이므로 사인은 1입니다. 따라서 : Area = (1/2) (1) (6) (1) = 3.
삼각형은 꼭지점 A, B, C를가집니다.정점 A의 각도는 π / 2이며, 정점 B의 각도는 (π) / 3이고 삼각형의 면적은 9입니다. 삼각형의 incircle의 면적은 얼마입니까?
접경 원 = 면적 = 4.37405 ""주어진 면적 = 9, 각도 A = π / 2 및 B = π / 3을 사용하여 삼각형의 변을 구하십시오. Area = 1 / 2 * a * b * sin C Area = 1 / 2 * b * c * sin A Area = 1 / 2 * a * c * sin B 그래서 우리는 9 = 1 이들 방정식을 사용하는 동시 해법은 다음과 같다 : 1 / 2 * a * b * sin (pi / 6) 9 = 1 / 2 * b * c * sin (pi / 2) 결과는 a = 2 * root4 108 b = 3 * root4 12 c = root4 108 경계의 절반을 풀어 냄. ss = (a + b + c) /2=7.62738 삼각형의 이러한 변 a, b, c 및 s를 사용 r = sqrt (((sa) (sb) (sc)) / s) r = 1.17996 이제 내접원의 면적을 계산합니다. Area = pir ^ 2 Area = pi (1.17996) ^ 2 Area = 4.37405 ""square units 하나님 축복 .... 나는 그 설명이 유용하길 바란다.