정답은
첫째, 빼기
결과를 원래 방정식에 연결하십시오.
분수를 나누려면 두 번째 분수를 그 역수로 바꾸고 두 분수를 곱하십시오. 상호의
당신은 어떻게 단순화합니까 [ frac {2} {9} cdot frac {3} {10} - { frac {2} {9} div frac {1} {3} 2} {5}?
1/3 [2/9*3/10-(-2/9-:1/3)]-2/5 =[6/90-(-2/9*3/1)]-2/5 =[6/90+(2/9*3/1)]-2/5 =[6/90+6/9]-2/5 =[6/90+60/90]-2/5 =[66/90]-2/5 =66/90-36/90 =30/90 =1/3
당신은 어떻게 단순화합니까 (1 / sqrt (a-1) + sqrt (a + 1)) / (1 / sqrt (a + 1) -1 / sqrt (a-1)) div sqrt (a + 1) / ( (a-1) sqrt (a + 1) - (a + 1) sqrt (a-1)
(1 / sqrt (a-1) + sqrt (a + 1)) / (1 / sqrt (a + 1) -1 / sqrt (a-1)) / (a-1) sqrt (a + 1) - (a + 1) sqrt (a + 1) 1) + sqrt (a + 1)) / (sqrt (a-1) -sqrt (a + 1)) / (sqrt (a + 1) cdot sqrt (a- 1) cdot sqrt (a + 1) -sqrt (a + 1) cdot sqrt (a + 1) sqrt (a-1))) = color ( (a + 1) -sqrt (a + 1)) / (sqrt (a + 1) cdot sqrt (a + 1) (a + 1) -sqrt (a + 1))) = 컬러 (적색) (a + 1) - (sqrt (a + 1) cdot sqrt (a-1) (a + 1) = sqrt (a + 1) cdot sqrt (a-1) (sqrt (a-1) -sqrt (a + 1) (a + 1) -sqrt (a + 1))) xx ((a + 1) + sqrt (a + 1) (a + 1)) / 색 (적색) (((1 + 1))) (a-1)) / (sqrt (a-1))) xx ((sqrt (a + 1) cdot sqrt (a-1) (a + 1) cdot sqrt (a-1)) xx s
(x ^ 2 - 16) / (2x ^ 2 - 9x + 4) div (2x ^ 2 + 14x + 24) / (4x + 4)를 어떻게 단순화합니까?
(x ^ 2-16) / (2x ^ 2-9x + 4) ÷ (2x ^ 2 + 14x) (x + 1)) / (2 (x + 4)) / (4 + x4) 취소 ((x + 4))) / ((2x-1) 취소 ((x-4))) * (취소 ((x + 4) (x + 1)) / ((2x-1)) (2) (x + 1) ) (x + 3))