대답:
설명:
sec = 1 / cos. cos ((5pi) / 12)을 계산합니다.
Trig 단위 원 및 상보 호 특성 ->
trig identity를 사용하여 sin (pi / 12)를 찾습니다.
마지막으로,
계산기를 사용하여 답을 확인할 수 있습니다.
대답:
설명:
-> 사용
Sec ((5pi) / 4)를 어떻게 평가합니까?
COSINE의 역수이므로 sec (5pi) / 4 = 1 / (cos ((5pi) / 4) 이제 각도는 3 사분면에 있고 코사인은 3 사분면 (CAST 규칙)에서 음수입니다. cos ((pi / 4) = 1 / sqrt2이므로, 결과는 sec (5pi) / 4 = - (cos ((5pi) / 4) = -1 / sqrt2 / 1 이것이 도움이되기를 바랍니다.
죄 ((5pi) / 9) cos ((7pi) / 18) - cos ((5pi) / 9) 죄 ((7pi) / 18)를 어떻게 평가합니까?
1/2이 방정식은 몇 가지 삼각법에 대한 지식을 사용하여 해결할 수 있습니다.이 경우, sin (A-B)의 확장은 다음과 같이 알 수 있습니다. sin (A-B) = sinAcosB-cosAsinB 여러분은 이것이 방정식의 방정식과 매우 유사하다는 것을 알게 될 것입니다. 우리는 그것을 해결할 수있다 : sin ((5pi) / 9) cos ((7pi) / 18) -cos ((5pi) / 9) sin ((7pi) / 18) = sin - (7pi) / 18) = sin ((10pi) / 18- (7pi) / 18) = sin ((3pi) / 18) = sin
[0, pi / 4]로부터의 정수 적분을 sec = 2x / (1 + tan ^ 2x)로 어떻게 평가합니까?
Pi / 4 두 번째 피타고라스 식 정체성에서 1 + tan ^ 2x = sec ^ 2x라는 것을 알 수 있습니다. 이것은 분수가 1과 같음을 의미하며 이것은 int_0 ^ (pi / 4) dx = x | _0 ^ (π / 4) = π / 4